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An energy stability theory is formulated for systems having moving contact lines. 
The method derives from criteria obtained from the integral mechanical-energy 
balance manipulated to reflect general material and dynamical properties of moving- 
contact-line regions. The method yields conditions for both stability and instability 
and is applied to the two-dimensional Rayleigh-Taylor problem in a vertical slot. 

1. Introduction 
There are relatively few analyses in the literature that deal with systems containing 

immiscible fluids with contact lines moving along solid bounding surfaces. Analyses 
of the stability in such systems are rarer still. A principal reason for this lack is the 
existence (Dussan V. & Davis 1974) of a contact-line singularity when one makes the 
usual hydrodynamic assumptions, viz. Newtonian incompressible fluids, no-slip 
boundary conditions, and smooth, rigid, solid walls. Although the singularity can be 
ignored under special circumstances, it cannot be in general since the dynamics of 
the fluids in the immediate vicinity of moving contact lines can have substantial 
effects on the motions of the entire fluid. Specifically, when the characteristic 
lengthscale in the system is several centimeters or less, surface tension plays an 
important role in determining the shape of the fluid interface. If the contact angle 
8, as shown in figure 1, is specified and surface tension is important, the interface 
shape in the far field is dependent on the local dynamics near the contact line. The 
present work addresses such systems. 

Linear stability analysis enables one to determine sufficient conditions for in- 
stability, and the rates of growth of the disturbances. However, in order to perform 
such an analysis one must state explicitly the constitutive nature of the fluids as well 
as give a detailed description of the mechanism used to remove the singularity at 
the moving contact line. Further, the calculation of weakly nonlinear effects requires 
the consideration of interface shapes that are relatively close to those of the basic 
state. The present work follows a different path and has its roots in two previous 
analyses, those of Dussan V .  (1975) and Davis (1980). 

Dussan V. (1975) investigates the stability of static states in a system containing 
two immiscible fluids in a closed container. The stability analysis is based upon a 
derived form of the balance equation of mechanical energy. We make use of this 
equation in the present study and so present it here as applied to the system shown 
in figure 2 :  

z{Jv d 
Lpu12+pyldV+cAI} = -J t rT-DdV+Jav r r T * v d s + g j c  V r n d l ,  (1.1) 

V 
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Liquid 

FIGURE 1. A sketch of the contact-line region where liquid displaces gas. 

FIGURE 2 .  A sketch of the finite domain 6’ separated by an interface 9 with contact line C. 

where y is the potential per unit mass associated with the body force ; u is the constant 
surface tension associated with the fluid interface Y formed by the two immiscible 
fluids; Y has area A , ;  p is the density, a different constant for each phase; u is the 
velocity field; V = I.’,+ V 2  is the entire fluid body with aV denoting the location of 
its surface, the inside surface of the solid container; C‘ is the location of the contact 
line lying a t  the intersection of 9’ and at7;  U is the velocity of the contact line; v 
is the unit outward normal to  a V ;  m is the unit normal to the contact line lying within 
the local tangent plane to Y and pointing outward from the fluid body; T is the stress 
tensor and j, t r  T-D d V is the rate a t  which mechanical is converted into non- 
mechanical energy. The problem was further restricted by assuming a $xed location 
of the contact line, and that the fluids obey the no-slip boundary condition on a]’. 
If we define 

K = IV plul’ d V ,  

J = S,. p y d ~ ’ + u ~ , ,  (1.3) 

(1 2)  
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then (1.1) takes the form 
d 
- { K + J }  = -j t r  T-DdV. 
dt r' 

Sufficient conditions for both the stability and instability of static. states are then 
deduced from (1.4) for systems containing fluids that can be described as dissipative, 
Viz- s,, t r  T. 0 d I.' > 0. The key factors are that K is positive, and that J is a functional 
of only the shape of the fluid interface (its value does not depend explicitly on the 
velocity field of either fluid). No restrictions are made on the size of the disturbance 
of the fluid interface other than the exclusion of the formation of detached drops of 
one fluid in the other. 

Davis (1980) examines the linearized stability of a static rivulet. He permits the 
contact lines to move and the dynamic contact angle to depend (linearly) on 
contact-line speed. The singularity a t  the moving contact line is removed by allowing 
the liquid to slip in a specified way at the solid boundary. He converts the partial 
differential equations describing the dynamics of the infinitesimal disturbances into 
an integral form, and shows that the system behaves like a damped linear-harmonic 
oscillator. He finds that the damping coefficient contains three terms, one accounting 
for the viscous dissipation of mechanical into non-mechanical energy for the 
Newtonian fluid, another reflecting the fact that  mechanical energy is converted to 
non-mechanical ene,rgy a t  the solid surface due to the slip, and with the remaining 
term being proportional to  d8/dU, adding to  the dissipation of mechanical energy 
when d8ldlT is a positive constant. 

The object of the present study is to present an approach for analysing the stability 
of a system that draws upon the least-limiting characteristics of the above two 
investigations. It will closely follow Dussan V. (1975) in that  sufficient conditions will 
be deduced for both stability and instability of a system subjected to possibly 
large-amplitude disturbances through the use of the mechanical-energy balance for 
material systems which we shall identify as dissipative. As in Davis (1980), the 
contact line will be permitted to move; however, our approach will not depend 
on the details of how the singularity a t  the moving contact line is removed, nor on 
the assumption of a linear relationship between 8 and U but will generalize the notion 
that d8ldU > 0 always contributes to the dissipation. In  $2 an expression quite 
similar to (1.4) will be derived from (1.1) that is appropriate for systems containing 
moving contact lines. A precise definition of dissipative fluids will be presented in 93. 
In $4 an illustration will be given of the application of the stability criteria to systems 
wit,h moving contact lines by analysing the two-dimensional Rayleigh-Taylor 
problem for a vertical parallel-sided slot. 

2. Conservation of mechanical energy 
The evaluation of the second and third terms on the right-hand side of (1.1) 

represents our point of departure from Dussan V. (1975). There is a great temptation 
to set the second term equal to zero, a consequence of the no-slip boundary condition 
evaluated along the inside surface of the container, and to set the third term equal 
to CT j, 17 cos8d1, where 8 is the contact angle defined through fluid 2. However, as 
already mentioned, when the usual hydrodynamic assumptions are made, a singu- 
larity (Dussan V. & Davis 1974) exists a t  the moving contact line. This singularity 
gives rise to an infinite rate of work performed by the solid on the fluid so that the 
second term on the right-hand side is undefined. 
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The primary approach taken over the past decade to remove this singularity has 
been to allow the fluid to slip along the solid surface. For example, one of the more 
popular assumptions (Huh & Mason 1977; Lowndes 1980; Hocking & Rivers 1983) 
has been to replace the no-slip boundary condition on the stationary walls with that 
introduced by Navier, 

Here, e = U/lUl, and /3 is a constant slip coefficient. When (2.1) is substituted into 
the second term on the right-hand side of ( l . l ) ,  one gets 

e - u  = -pe.T*v. (2.1) 

u * T * v d s = - P J  {e*T.v}2ds. 
c? L‘ 

( 2 . 2 )  

Another boundary condition (Huh & Mason 1977; Bach & Hassager 1985) allows 
t’he fluids instantaneously located within a small distance of the moving contact line 
to exert a zero shear stress on the solid, while the no-slip boundary condition is obeyed 
elsewhere. Under this assumption, the second term on the right-hand-side of (1.1) is 
identically zero. 

To further complicate matters the precise value of the third term on the right-hand 
side of (1.1) is unknown. There is experimental evidence that leads one to question 
the utility of the dynamic-contact-angle data reported in the literat’ure (Ngan & 
Dussan V. 1982). It seems that typical experimental techniques cannot detect’ the 
significant deformation in the fluid interface resulting from viscous forces in the 
immediate vicinity of the moving contact line. Thus, the rate of work done by the 
solid on the fluid a t  C, viz. the third term on the right-hand side of ( l . l ) ,  cannot be 
evaluated accurately. 

Despite all these difficulties, there does exist evidence which supports another 
procedure (Hansen & Toong 1971 ; Kafka & Dussan V. 1979 ; Ngan & Dussan V .  1986) 
for evaluating the last two terms on the right-hand side of (1.1). It relies on the view 
that the details of the flow, the shape of Y and the location of C cannot be obtained 
precisely by a viewer ‘far’ from the contact line. One excludes from consideration 
the fluids instantaneously located within a very small distance R of the contact line; 
refer to figure 3. (The Hansen & Toong procedure differs from that of Kafka & Dussan 
V. and Ngan & Dussan V., see Ngan 1985). This leads to a correct expression for the 
mechanical-energy balance as long as one can accurately account for the rate a t  which 
work is done by the fluids instantaneously occupying the excised region AIL on the 
rest of the fluid body. Thus, one must know both the velocity field of the fluids a t  
the ‘outer boundary’ S of AT.,, and the angle 8 formed between the planes tangent 
to Y a t  r = R and tangent to the solid surface. For the case when fluid 1 is a passive 
gas and fluid 2 is a Newtonian liquid, i t  is argued that to lowest order in R the velocity 
field near r = R is given by 

where 

and ( r ,  4, z )  represents the local cylindrical coordinate system. The moving contact 
line is perceived to be located a t  r = 0, and the liquid occupies the region given by 
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FIGURE 3. A sketch with the region A &  excised. The polar coordinates of a point on Y are 
(7.. @(r,  t ) ) .  

q 5 ~  [O, @(r, t ) ] .  The mechanical-energy balance for the one-fluid system takes on the 
approximate form 

where p2 is the viscosity of fluid 2. S has r = R and 0 < 0 < 0, V, = V-AV, ,  and 
C, denotes the intersection of S,  with 9’. Note that when V, is excluded, all the 
quantities V ,  Y and c! are different by O ( R )  from those quantities associated with 
the slip procedure. In  what follows we shall not distinguish these slight differences. 
The angle 0, equivalent to @(R, t ) ,  may depend on U. Thus 0, which depends on R, 
and is the only parameter appearing on the right-hand side of (2.3), is experimentally 
measurable. The terms on the right-hand side of (1.1) are related approximately to 
the terms on the right-hand side of (2.3) by 

+V jc 17 c0~0dZ-fl jcR 1T cosOdl= 0, (2.4) 

where it is understood that the region on the solid surface along which the fluid slips 
is embedded well within a(AV,) n aV,  and 0 is the contact angle?. 

Thus far we have only addressed the problem of evaluating the right-hand side of 
(1 .1)  based upon current knowledge of the dynamics of fluids in the immediate 
neighbourhood of the moving contact line. The key to our approach for analysing the 

t If the continuum theory employed omits long-range molecular forces, the contact-line region 
appears as shown in figure 1 and 0 is the ‘microscopic’ or actual contact angle. If the continuum 
theory includes such forces, the interface undergoes large deformation near the contact line, even 
in the static state, so that  figure 1 is not representative. In  this case also 0 is the actual contact 
angle. 

5 Y L M  173 
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FIGURE 4. A sketch of typical measured contact angles 8, verses contact-line speed 17; 8, and 
8, the advancing and receding static angles respectively. 

stability of the system lies in the decomposition of the third term on the right-hand 
side of either (1.1) or (2.3) into reversible and irreversible portions. 

The general behaviour of the dynamic contact angle reported in the literature, 
denoted by 8,, is illustrated in figure 4. As already mentioned, 8, does not represent 
the dynamic behaviour of either 8 or 0 due to the deformation of the fluid interface 
near the contact line by the viscous forces. However, one may anticipate that the 
behaviour of these three angles would coincide in the limit TJ,u,/IT+O, when the 
capillary forces dominate the viscous forces. For this reason, we assume that all three 
angles approach 0, (or 0,) as U+O, for U > 0 (or ti < 0).  In  fact, we further restrict 
our attention to the case 0, = Or, where contact>-angle hysteresis is absent and the 
static contact angle is unique; we denote their common value by 8,. If we let 9 denote 
either 0 or 0 and write cos -9. = cos 8, + (cos 9 - cos O,), then the third term on the 
right-hand side in either (1 .1 )  or (2.3) can be written as 

IT U c o s 9 d l =  IT C O S ~ ~ - + I T  U { C O S ~ - C O S ~ , )  dl, (2 .5)  s dA2s dt s 
where A,, denotes the wetted area of the solid/fluid 2 interface. 

two alternative forms : 
In  summary, we can write the equation for conservation of mechanical energy in 

-{K+J-ITA,, d cos8,) = -sv t r  T-DdV+savu.T-vds 
dt 

or, 
+cJ U(cos8-cos0,)dZ, (2.6) 

C 

d U2 sin2 0 dl 
dt @-sin@ cos@ 
-{K+J-aA2,cos0,) = -  trT*DdV+%,u2 

U{COS 0 - cos 8,) dl. (2.7) 

These are the equations that will be used to analyse the stability of the system. Note 
that (2.7) applies when fluid 1 is a passive gas. It could, of course, be extended to 
the case of two immiscible fluids in which case the second term on the right-hand 
side of this equation would be augmented. 

3. Dissipative materials 
Our attention will be restricted to that class of materials that we shall define as 

dissipative. As indicated in Davis (1980), there are two mechanisms by which 
mechanical energy can be dissipated in systems with moving contact lines. It can 
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occur within the interior of the fluids, viz. when t r  T . 0  > 0. However, it can also 
occur a t  the moving contact line. By this we mean I ,  < 0, and I ,  < 0, where we define 

I ,  = Javr u* T .  v ds + g jc U{cos 8 - cos 8,) dl, (3.1) 

( 3 . 2 )  

Note that if I ,  < 0, and t r  T.D > 0 throughout the fluids, then I ,  < 0 ;  see (2.4). 
Although one cannot yet say that all physically realistic descriptions of the dynamic 
behaviour of fluids near a moving contact line must necessarily be dissipative, the 
statement is consistent with all the information available, as discussed below. 

The most thoroughly measured contributor to I ,  and I ,  is the variation of contact 
angle with U. To our knowledge there exist no dynamic-contact-angle data giving 
the measured contact angle 8, as a decreasing function of IT. Although this fact is 
consistent with 

U{cos 9- cos S,} dl < 0, 

for 8 equalling either 8 or 0, our discussion in 92 underlines the fact that  8, is neither 
8 nor 0. Thus such data in their present form are insufficient for determining either 
I ,  or I ,  directly. 

As discussed in $ 2 .  there have been a number of analyses of the dynamics of systems 
with moving contact lines with the objective of determining the dynamic behaviour 
of the fluids in the immediate vicinity of the contact line by comparison with 
experimental data. The studies which assume the slip boundary condition of Navier 
(Huh & Mason, Lowndes, Hocking & Rivers), also assume that 8 equals 8, for all 
contact-line speeds. Each study finds, upon choosing a small constant positive value 
for /3, varying degrees of agreement with experimental data. If 8 > 8, and slip is given 
by ( 2 . 2 ) ,  then (3.1) gives I ,  < 0. However, the agreement of these analyses with 
experiment is not conclusive. At each speed of the contact line two parameters, 8 and 
p, must be obtained from only one data point. Presumably, more than one family 
of values for 8 and p could be found?. 

As discussed in 92, Bach & Hassager (1985) use a slip boundary condition. They 
assume that the shear stress is zero within a small distance near the contact line, and 
that the no-slip boundary condition applies elsewhere. For specific values of 8, U ,  
and of the size of the shear-free region, they are able to  predict the experimentally 
measured values of 8, in an experiment (Ngan & Dussan V. 1982) where silicone oil 
displaces air through slots of two different spacings. They find 8 = 35". Since 8, = 0 
for silicone on glass in the presence of air, then I ,  < 0. 

Hansen & Toong (1971) and Ngan & Dussan V. (1986) surmise 0 from experimental 
measurements of the apex heights of menisci and an analysis of the dynamics of the 
fluids. Hansen & Toong examine Nujol displacing air in a glass capillary and find that 
0 = 21" for 0 < p, U / g  < 0.0025; hence, I ,  > 0, implying that mechanical energy 
is generated near C. However, more extensive measurements have been made by Ngan 

t In general, a one-parameter family of values of (0 ,p )  will give rise to the same outer solution. 
Here we refer to the fact that  more than one family of values of (0 ,  p) can be identified so that the 
analytical solution in the outer region is consistent with Om a t  each value of U .  When analysing 
immiscible fluid displacement through a capillary, i t  is difficult to devise more than one experiment 
for a given material system for the contact line moving at a specified speed. One such set of 
experiments would be to perform them in a centrifuge rotating a t  such a high rate that  the effective 
Bond number is much greater than unity 

5-2 
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2p2 t12 sin2 0 
Range ofp2 lJ /a  0 @-sin@ cos@ nU COSO I ,  (per unit length) 

0.0134.014 35" 0.033 -0.0977 -0.0637 
0.0144.01.5 38" 0.0358 -0.123 -0.0872 
0.01.50.016 32" 0.0365 -0.159 -0.123 

TABLE 1 .  Estimates of I ,  from Ngan & Dussan V. (1986) 

& Dussan V. (1986) of silicone oil displacing air in the narrow slot formed by two 
parallel microscope slides. For 0.013 < lJp2/a < 0.016 and for seven different gap 
widths d ,  0.01 em < d < 0.12 em, they find that IR < 0, as shown in table 1 .  There 
is dissipation of mechanical energy near C. Clearly, more data is needed. 

4. Sufficient conditions for stability and instability 
Define 

py d V + a A ,  - aAzs cos 0,. 

and 

or 

9 = t rT .DdV+I ,  

9 = t rT*DdV+I, .  

s 
s 

(4.2 a)  

(4.2b) 

If a slip model is used, (4 .2a)  applies, while if an exclusion method is used, (4 .2b )  
applies. Thus, the energy balance ( 1 . 1 )  has the general form? 

d 
dt 
- ( K + J )  = -9 < 0. (4.3) 

If the materials are dissipative, 9 > 0, the theorems presented in Dussan V. (1975) 
apply to the present study. Here J is a functional of the shape of the inside surface 
of the container, as well as the fluid interface. However, the admissible class of 
interface shapes is now modified. Here they need only be continuously differentiable 
and be consistent with the fact that  fluids 1 and 2 are incompressible. No restriction 
need be specified concerning the location of the contact line or the local values of the 
contact angle. As in the previous study, we restrict our attention to systems 
consisting of dissipative materials. Hence, the inequality in (4.3) holds. 

It is instructive to illustrate the implications of the theorems cited above by 
analysing the two-dimensional Rayleigh-Taylor problem for a vertical slot as shown 
in figure 5. A formal statement of these theorems appears in Appendix A. 

Let us begin by analysing the special case 8, = in. For this particular problem the 
static basic state is given by h = 0, and 

J = J:L [ 1 + (g)2]' d~ - &G j' h2 dx, 
-1 

2 

(4.4) 

where z = h(x) describes any element in the set of admissible interface shapes, 
dimensionless variables x and z are scaled with the gap width L, G = (p, -pz)gL2/a 

Form (4.2b) holds only for the case where fluid 1 is a passive gas. However, we expect that  
the two-fluid case would be similar; in what follows we shall presume this. 
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Jg 

FIQURE 5.  The basic state corresponding to the Rayleigh-Taylor problem in two dimensions. A 
heavier fluid is assumed to be above lighter immiscible fluid, p1 > pz, with L denoting the width 
of the slot. 

is the Bond number, and J is scaled with gL. Note that (4.4) is identical with the 
equation for J in Dussan V. (1975) (refer to the first equation on p. 371). We integrate 

14.5) 
(4.3) to get 

The first inequality follows from the fact that  K denotes the kinetic energy of the 
system, see (1.2), and is hence non-negative. Thus, we have shown that the 
instantaneous value of J has an upper bound K(0)  + J (0 ) .  

We next parameterize the elements in the set of admissible interface shapes by their 
L2-norms B ,  where e2 = Ji; h2 dx. It is convenient to define a normalized form ,u of each 
interface shape by h = ep, and j $ 2 d x  = 1. 

In order to determine sufficient conditions for stability and instability, the solution 
must be obtained to the variational problem that follows. 

J ( t )  < K( t )+J( t )  < K(O)+J(O). 

For each $xed value of 
of J :  

J 

subject to the constraints 

It is straightforward to 

Variational problem 

s2 determine the function ,urn("; 2) that minimizes the value 

( 4 . 6 ~ )  

(4 .6b)  

use a priori estimates (Joseph 1976, p. 255ff) to  find that 

e-$Ge2 < J ,  < [l + ~ C ~ ~ ~ ] ; - - G B ~ .  (4.7) 
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This implies a form of J ,  illustrated in figure 6. The Lagrange-Euler equation and 
boundary conditions associated with the variational problem stated above are as 
follows : 

% = o  a t x = _ + + ,  (4.8b) 
dx 

( 4 . 8 ~ )  

where h and a represent Lagrange multipliers. The solution to  this boundary-value 
problem can be obtained numerically or in approximate form as a perturbation series 
in powers of E .  

The sufficient conditions for stability and instability follow directly from the 
dependence of J ,  on e2 and G. Since the static basic state consists of a flat interface, 
it is characterized by J = I and c2 = 0, for all values of G. Let us define JZ(G)  as 
the maximum value of J ,  for 0 ,< c2 < co, and c$(G) as the value of c2 satisfying 
JZ(G)  = Jm(e;, G). From figure 6 we see that 

JZ+co,e;+co forG < 0, 

I < J Z < c o ,  0 < ~ 2 , < c o  f o r 0 d G < n 2 ,  

J Z =  1, e $ = O  f o r G > n 2 .  

(4.9) 

If the system is disturbed in such a way that J ( 0 )  < JZ-K(O) and ~ ' ( 0 )  < E ; ,  then 
the system will return to its basic state, the configuration available with the lowest 
potential energy. This follows from the fact that  the instantaneous value of J 
associated with the system as i t  dynamically responds to the initial disturbance must 
obey inequality (4.5) ; hence J ( t )  < J Z .  On the other hand, from the definition of J ,  
we have that J ,  < J(t) .  Thus, we can draw several conclusions: 

(i) The system is stable to any initial disturbance when G < 0. 
(ii) The system is stable to disturbances of only limited size when 0 < G < n2. 

These include disturbances such that J ( 0 )  < J&-K(O) and ~ ' ( 0 )  < c;. 
(iii) No initial disturbances fulfills the above stated criterion for stability when 

G > n2. 
If the system is disturbed in such a way that J ( 0 )  < J; - K(0)  and e2(0) > c;, then 

i t  is impossible for the system to return to its basic state. No such initial disturbances 
exist when G < 0, but they do exist when G > 0. 

Let us return to the more general case when 0, + in. The static basic state no longer 
corresponds to a flat surface. The function J has the generalized form 

and p satisfies the constraints 

1 $ f-; p d x  = 0, f-4jL2dx = 1. (4.10b) 

The variational problem is the same as t'hat in (4.6) but now has the modified 



Stability in systems with moving contact lines 125 

J 

FIGURE 6. A sketch of J ,  for the case 8, = in for the three ranges of G: (a )  G > 0 ;  ( b )  0 < G < nz; 
(c) nz < G. The shaded regions represent values of J for which no admissible configuration exists. 

definition ( 4 . 1 0 ~ ) .  The corresponding Lagrange-Euler equation and boundary 
conditions are as follows: 

.drum = &tan (6,-i7t) at x = Ti,  
dx 

(4.11 b)  

(4.11c) 

where again, h and a are Lagrange multipliers. The general solution for ,urn can be 
expressed in terms of elliptic functions; however, the unknown constants must be 
evaluated numerically. Since the purpose of this discussion is demonstrative, we write 
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FIGURE 7 .  A sketch of the anticipated form of J ,  when Os =k in for the three ranges of G: ( a )  G < 0 ;  
(b)  0 < G < G,; ( c )  G, < G. The shaded regions represent values of J for which no admissible 
configuration exists. The quantities E: and E: denote the values of c2 corresponding to the basic state 
and the local maximum value of J ,  > 1 .  

the first two terms of an asymptotic expansion valid in the limit as tan (O,-$t) -to 
as derived in Appendix B. Though, the expansion is not uniform in e2 for large E ,  we 
can sketch in figure 7 the anticipated global behaviour of J ,  based upon the known 
global characteristics of J ,  when Bs = in, and the asymptotic solution valid for small 
values of 1O,-+n[. Define G, to be the critical value of G obtained from linear 
instability theory of the basic state with 13, + in. 

The results shown in figures 6 and 7 can be interpreted using bifurcation theory. 
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FIGURE 8. A sketch of the anticipated bifurcation picture for two-dimensional Rayleigh-Taylor 
instability. When 0, = fn, there are bifurcation points at G,(O) from which downward bifurcation 
emerge. Hatches denote unstable branches. When 0, > an, the branch splits into two parts 
(----). When 0, < in, the branch splits into two parts (-.-.- ). 

For OS = in,  the inviscid linearized theory gives bifurcation points a t  
G = G,(O) = ( 2 n -  1)2n2 for n = 1,2,3,  . . . , as shown in figure 8. If these bifurcations 
are subcritical as shown, then the global branch emanating from G,(O) should be as 
shown in figure 8. It begins a t  E = 0, G = G,(O) and approaches E + O O  as G-tO, 
consistent with (4.8) above. The planar-interface basic state is unstable to infinitesimal 
disturbances for G > G,(O), but the whole subcritical branch for 0 < G < G,(O) is also 
unstable and serves as the threshold amplitude above which the basic state is also 
unstable. This threshold amplitude corresponds to E = E* above. 

For 8, =t= in the basic state has E + 0 as shown in figure 8. The dashed curves show 
the cases for the two signs of B S - i x .  As G is increased from zero, a dashed curve is 
followed but cannot proceed further than the limit point a t  G = Gl(18s-inl) after 
which the basic state no longer exists. When we examine the inviscid linearized 
stability of this solution we find that stability is lost a t  G - n2[1 --; (~9,-$t)~] for 
8,-+in, showing that, consistent with figure 8, both a slight bulging up (8, > in) and 
down (8, < in) of the interface in the basic state give less stable states than the case 
8, = in. The bulging makes the bifurcation imperfect. 

Recall that if 9 > 0, then the stability and instability conditions from the energy 
theory do not depend on the viscosities of the fluid (or even on their constitutive 
behaviour). Given this independence, it is natural and certainly simpler to compare 
the results with those of linear inviscid theory; we have done this. Viscosity should 
affect the dissipation and modify the growth rates but not the threshold conditions, 
as in the case of the capillary breakup of a Rayleigh jet. 
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5.  Discussion 
I n  this paper we present a stability theory for static-equilibrium basic states 

tailored to systems containing more than one immiscible fluidt and having moving 
contact lines. We have generalized the variational technique of Dussan V. (1975), 
which is restricted to fixed contact lines, and Davis (1980), who performs a linear 
stability analysis of static rivulets with moving contact lines. The key to the approach 
is the decomposition of the rate of work associated with the contact line into reversible 
and irreversible portions. We restrict our attention to systems consisting of dissipative 
materials and extend the definition of dissipation to include the familiar rate of loss 
of mechanical energy in the interior of the fluid, as well as at moving contact lines, 
the latter being a consequence of contact angle being an increasing function of 
contact-line speed. 

The theory identifies minima J ,  of a potential-energy functional J as a means for 
determining suficient conditions for both the stability and instability of the system. 
The functional includes effects of a conservative body force, the surface tension of 
the fluid-fluid interface, and the unique static contact angle. These minima J ,  are 
taken over sets of admissible functions and are parameterized by the L2-norm e of 
the interface shape for fixed values of the Bond number G. An examination of J ,  
as a function of c2 determines the nonlinear stability behaviour of the system. 

Thus, for static basic states, one is able to by-pass the solution of a boundary-value 
problem for the velocity, pressure and interface shape for a viscous fluid in favour 
of the variational approach. The energy method posed here stands as an alternative 
to linear and bifurcation theories and is capable of dealing with strongly nonlinear 
systems. The nonlinearity enters through the size of the disturbance and the fact that 
limu -, O +  (d9/dti) need not equal lim, + ,-(dS/dU), where 9 denotes either the 
actual contact angle 8 or the experimentally measurable angle 0. This method has 
broad applications beyond the Rayleigh-Taylor problem. 

SHD is grateful for support from the National Science Foundation, Fluid Mech- 
anics Program. 

Appendix A 
The two theorems appearing in Dussan V. (1975) apply to the present study. They 

are as follows: 
THEOREM 1 .  If, over the set of admissible interfacial conJigurations, the functional J 

is  bounded rom below, and there exists a positive number q2 such that $9 > q2K, then 
lim, oo s, 

THEOREM 2. Let M = inf,,, so, J .  For a particular disturbance if f o r  any e > 0, 
K(0) + J(0)  < M -  e,  then the system cannot return to its basis state. 

Here H denotes the set of all admissible one-parameter families of elements in the 
set containing all admissible fluid-interface configurations. The variable s is a 
continuous real variable contained within the interval [0, so] such that the interface 
corresponding to s = 0 represents its initial configuration, and the fluid interface 
corresponding to so represents its configuration in its basic state. The value so is not 
a fixed number, and may be infinite. I n  the Rayleigh-Taylor problem JZ = M .  

,+if K ( T )  dT = 0 for any T > 0. 

In  part of the analysis for purposes of simplicity we took one fluid to be a passive gas. We 
expect the results to apply to the two-fluid case. 
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Appendix B 

as O,-t+x,  of the form 
We seek a solution to  ( 4 . 1 0 ~ )  in terms of an asymptotic expansion in tan(O,-$) 

pm = po(X)+tan2(0,-~x),u2(x)+ ..., 
h = h,+tan2(0,-~x)h2+ ..., 

a =  a,+ tan2(0,-$t)a2+ ..., 

Jm = Jm,+tan2(0,-~x)Jm2+tan4(0,-~x)Jm,+ ..., 

with S held constant, where 6 = €/tan (O,-$). Two classes of principal eigenfunc- 
tions emerge: class 1 for which 

with 

and class 2 for which 
1 2 

p, = 2(262x4-x2+8): sinxx--,, x (B 2 a )  

with r = x .  (B 2b)  

In the above we have written r = hi. 
When 0 < 6 < l/dl80, case 1 applies and A, is real, ranging from - 00 to 0. Here 

Jm, = 1, 

cosh 2 8 sinh Irl- 6lrl -sinh 2lr( -- 
Jm4 = Irl sinhtlrl + i281rl sin4tlrl 
~ 

where 1l-l = (-A,)& 

Here 
When l /z/ l80 < 6 5 0.9796, case 1 applies and A,, is real, ranging from 0 to x2. 

Jm, = 1, 

3 s i n r + r  4 
Jm2 = 4 r s i n 2 $ r  r2 ;GS2, 

2 cos ir 8 sin r- 6 r -  sin 2 r  J =--- 
m4 r2 r s i n i r  + 128r  sin4 +r 

When 0.0976 5 6 < co, case 2 applies. Here 

J,, = 1 ,  

7 l 2  

0 
Y Jm2 = -++62 ( x 2 - G ) ,  

J m4 =?!-?(1+y)2. x2 n4 
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